Tuning the peak position of subwavelength silica nanosphere broadband antireflection coatings

نویسندگان

  • Fei Tao
  • Pritesh Hiralal
  • Lianbing Ren
  • Yong Wang
  • Qing Dai
  • Gehan AJ Amaratunga
  • Hang Zhou
چکیده

Subwavelength nanostructures are considered as promising building blocks for antireflection and light trapping applications. In this study, we demonstrate excellent broadband antireflection effect from thin films of monolayer silica nanospheres with a diameter of 100 nm prepared by Langmuir-Blodgett method on glass substrates. With a single layer of compact silica nanosphere thin film coated on both sides of a glass, we achieved maximum transmittance of 99% at 560 nm. Furthermore, the optical transmission peak of the nanosphere thin films can be tuned over the UV-visible range by changing processing parameters during Langmuir-Blodgett deposition. The tunable optical transmission peaks of the Langmuir-Blodgett films were correlated with deposition parameters such as surface pressure, surfactant concentration, ageing of suspensions and annealing effect. Such peak-tunable broadband antireflection coating has wide applications in diversified industries such as solar cells, windows, displays and lenses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching

Fused silica subwavelength structures (SWSs) with an average period of ~100 nm were fabricated using an efficient approach based on one-step self-masking reactive ion etching. The subwavelength structures exhibited excellent broadband antireflection properties from the ultraviolet to near-infrared wavelength range. These properties are attributable to the graded refractive index for the transit...

متن کامل

Biomimetic subwavelength antireflective gratings on GaAs.

We have developed a simple and scalable bottom-up approach for fabricating moth-eye antireflective coatings on GaAs substrates. Monolayer, non-close-packed silica colloidal crystals are created on crystalline GaAs wafers by a spin-coating-based single-layer reduction technique. These colloidal monolayers can be used as etching masks during a BCl(3) dry-etch process to generate subwavelength-str...

متن کامل

Light management for photovoltaics using high-index nanostructures.

High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways ...

متن کامل

Subwavelength nanostructures integrated with polymer-packaged iii–v solar cells for omnidirectional, broad-spectrum improvement of photovoltaic performance

Reduction in surface and interface reflectance via the integration of subwavelength nanostructures in flexible polymer packaging material combined with incorporation of dielectric nanoislands into a conventional two-layer antireflection coating has been demonstrated, analyzed and optimized. Transmittance measurements of moth-eye textured polymer packaging sheets with different tapered pillar he...

متن کامل

Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm.

Designs of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials are optimized using a genetic algorithm. Co-sputtered and low-refractive-index materials allow the fine-tuning of refractive index, which is required to achieve optimum anti-reflection characteristics. The algorithm minimizes reflection over a wide range of wavelengths and incident angles, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014